Ricin uses arginine 235 as an anchor residue to bind to P-proteins of the ribosomal stalk

نویسندگان

  • Yijun Zhou
  • Xiao-Ping Li
  • Brian Y. Chen
  • Nilgun E. Tumer
چکیده

Ricin toxin A chain (RTA) binds to stalk P-proteins to reach the α-sarcin/ricin loop (SRL) where it cleaves a conserved adenine. Arginine residues at the RTA/RTB interface are involved in this interaction. To investigate the individual contribution of each arginine, we generated single, double and triple arginine mutations in RTA. The R235A mutation reduced toxicity and depurination activity more than any other single arginine mutation in yeast. Further reduction in toxicity, depurination activity and ribosome binding was observed when R235A was combined with a mutation in a nearby arginine. RTA interacts with the ribosome via a two-step process, which involves slow and fast interactions. Single arginine mutations eliminated the fast interactions with the ribosome, indicating that they increase the binding rate of RTA. Arginine residues form a positively charged patch to bind to negatively charged residues at the C-termini of P-proteins. When electrostatic interactions conferred by the arginines are lost, hydrophobic interactions are also abolished, suggesting that the hydrophobic interactions alone are insufficient to allow binding. We propose that Arg235 serves as an anchor residue and cooperates with nearby arginines and the hydrophobic interactions to provide the binding specificity and strength in ribosome targeting of RTA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structures of Eukaryotic Ribosomal Stalk Proteins and Its Complex with Trichosanthin, and Their Implications in Recruiting Ribosome-Inactivating Proteins to the Ribosomes

Ribosome-inactivating proteins (RIP) are RNA N-glycosidases that inactivate ribosomes by specifically depurinating a conserved adenine residue at the α-sarcin/ricin loop of 28S rRNA. Recent studies have pointed to the involvement of the C-terminal domain of the eukaryotic stalk proteins in facilitating the toxic action of RIPs. This review highlights how structural studies of eukaryotic stalk p...

متن کامل

Structural insights into the interaction of the ribosomal P stalk protein P2 with a type II ribosome-inactivating protein ricin

Ricin is a type II ribosome-inactivating protein (RIP) that depurinates A4324 at the sarcin-ricin loop of 28 S ribosomal RNA (rRNA), thus inactivating the ribosome by preventing elongation factors from binding to the GTPase activation centre. Recent studies have disclosed that the conserved C-terminal domain (CTD) of eukaryotic ribosomal P stalk proteins is involved in the process that RIPs tar...

متن کامل

Pentameric organization of the ribosomal stalk accelerates recruitment of ricin a chain to the ribosome for depurination.

Ribosome inactivating proteins (RIPs) depurinate a universally conserved adenine in the α-sarcin/ricin loop (SRL) and inhibit protein synthesis at the translation elongation step. We previously showed that ribosomal stalk is required for depurination of the SRL by ricin toxin A chain (RTA). The interaction between RTA and ribosomes was characterized by a two-step binding model, where the stalk ...

متن کامل

Arginine residues on the opposite side of the active site stimulate the catalysis of ribosome depurination by ricin A chain by interacting with the P-protein stalk.

Ricin inhibits protein synthesis by depurinating the α-sarcin/ricin loop (SRL). Ricin holotoxin does not inhibit translation unless the disulfide bond between the A (RTA) and B (RTB) subunits is reduced. Ricin holotoxin did not bind ribosomes or depurinate them but could depurinate free RNA. When RTA is separated from RTB, arginine residues located at the interface are exposed to the solvent. B...

متن کامل

Interaction between trichosanthin, a ribosome-inactivating protein, and the ribosomal stalk protein P2 by chemical shift perturbation and mutagenesis analyses

Trichosanthin (TCS) is a type I ribosome-inactivating protein that inactivates ribosome by enzymatically depurinating the A(4324) at the alpha-sarcin/ricin loop of 28S rRNA. We have shown in this and previous studies that TCS interacts with human acidic ribosomal proteins P0, P1 and P2, which constitute the lateral stalk of eukaryotic ribosome. Deletion mutagenesis showed that TCS interacts wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017